On an $L_p$ Version of the Berry-Esseen Theorem for Independent and $m$- Dependent Variables
نویسندگان
چکیده
منابع مشابه
An Inductive Proof of the Berry-Esseen Theorem for Character Ratios Running head: Berry-Esseen Theorem for Character Ratios
Ratios Running head: Berry-Esseen Theorem for Character Ratios Submitted 3/9/05; Revised 8/6/06 By Jason Fulman Department of Mathematics, University of Southern California Los Angeles, CA 90089, USA [email protected] Abstract: Bolthausen used a variation of Stein’s method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We m...
متن کاملBerry-Esseen for Free Random Variables
An analogue of the Berry-Esseen inequality is proved for the speed of convergence of free additive convolutions of bounded probability measures. The obtained rate of convergence is of the order n, the same as in the classical case. An example with binomial measures shows that this estimate cannot be improved without imposing further restrictions on convolved measures. Courant Institute of Mathe...
متن کاملOn the constant in the nonuniform version of the Berry-Esseen theorem
In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method. The aim of this paper is to obtain a constant in Chen-Shao theorem, where the random variables are not necessarily identically distributed and the existence of their third moments are not assumed. The bound is given in terms of tru...
متن کاملA Sub-Gaussian Berry-Esseen Theorem For the Hypergeometric Distribution
In this paper, we derive a necessary and sufficient condition on the parameters of the Hypergeometric distribution for weak convergence to a Normal limit. We establish a Berry-Esseen theorem for the Hypergeometric distribution solely under this necessary and sufficient condition. We further derive a nonuniform Berry-Esseen bound where the tails of the difference between the Hypergeometric and t...
متن کاملAn Inductive Proof of the Berry-Esseen Theorem for Character Ratios Running head: Berry-Esseen Theorem for Character Ratios Submitted 3/9/05; Revised 8/6/06
By Jason Fulman Department of Mathematics, University of Southern California Los Angeles, CA 90089, USA [email protected] Abstract: Bolthausen used a variation of Stein’s method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We modify this technique to prove a Berry-Esseen theorem for character ratios of a random representa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1973
ISSN: 0091-1798
DOI: 10.1214/aop/1176996944